PACE INSTITUTE OF TECHNOLOGY \& SCIENCES::ONGOLE (AUTONOMOUS)

II B.TECH I SEMESTER END SUPPLEMENTARY EXAMINATIONS, MARCH/APRIL - 2023 FLUID MECHANICS (CE Branch)
Time: 3 hours
Max. Marks: 70
Answer all the questions from each UNIT (5X14=70M)

Q.N		Questions	Marks	CO	KL
UNIT-I					
1.	a)	Explain the phenomena surface capillarity. Obtain an expression for capillarity rise of a liquid.	[7M]	1	3
	b)	Fig. shows a U-tube differential manometer connecting two pressure pipes at A and B contains a liquid of specific gravity 1.5 under a pressure of 115 $\mathrm{kN} / \mathrm{m}^{2}$. The pipe B contains oil of specific gravity 0.9 under a pressure of $220 \mathrm{kN} / \mathrm{m}^{2}$ Find the difference of pressure measured by mercury as fluid filling U-tube.	[7M]	1	2
OR					
2.	a)	State and prove the Pascal's law	[7M]	1	3
	b)	Determine the total pressure and depth of center of pressure on a plane rectangular surface of 3.5 m wide and 4.5 m deep when its upper edge is horizontal and (i) coincides with water surface (ii) 2.5 m below the free surface of water.	[7M]	1	4
UNIT-II					
3.	a)	Distinguish between: (i).Stream line and Path line (ii). Streak line and Stream tube (iii). Laminar flow and Uniform flow.	[7M]	2	2
	b)	The velocity potential function (ϕ) is given by an $\varnothing=-\left(\frac{x y^{3}}{3}\right)-x^{2}+\left(\frac{x^{3} y}{3}\right)+y^{2}$ (i)Find the velocity components in x and y directions.	[7M]	2	4
OR					
4.	a)	State and derive three dimensional (3D) continuity equation for incompressible fluid.	[10M]	2	3

	b)	The diameter of a pipe at the section 1-1 and 2-2 are 150 mm and 300 mm respectively. If the velocity of water flowing through the pipe at section 1-1 is $3 \mathrm{~m} / \mathrm{s}$, find (i). Discharge through the pipe and (ii). Velocity of water at section 2-2.	[4M]	2	4
UNIT-III					
5.	a)	Draw a neat sketch of Reynolds apparatus and explain how the laminar flow can be demonstrated with the help of the apparatus.	[7M]	3	3
	b)	Derive the expression for the loss of head in a pipe due to friction?	[7M]	3	3
OR					
6.	a)	What do you understand by the total energy line, hydraulic gradient line, pipes in series, pipes in parallel and equivalent pipe?	[7M]	3	2
	b)	Explain the procedure of pipe net work problems by using Hard-Cross Method.	[7M]	3	3
UNIT-IV					
7.	a)	Explain the principle of orifice meter with neat sketch? Derive an expression for the rate of flow of fluid through it.	[10M]	4	2
	b)	Explain the fallowing terms (i). Coefficient of velocity (ii). coefficient of contraction (iii). coefficient of Discharge (iv). Vena-contracta	[4M]	4	2
OR					
8.	a)	Derive an expression for the discharge over a Triangular notch in terms of head of water over the crest of the notch.	[7M]	4	3
	b)	Water flows through a rectangular notch of 2.5 m width and depth of water over the notch is 500 mm , find discharge of the rectangular notch. Take coefficient of discharge is 0.6 .	[7M]	4	4
UNIT-V					
9.	a)	Derive an expression for the displacement thickness	[7M]	5	2
	b)	Explain the phenomenon of separation of boundary layer with a neat sketch	[7M]	5	3
OR					
10.	a)	Obtain Von Karman momentum integral equation	[7M]	5	3
	b)	Find the displacement thickness and the momentum thickness for velocity distribution in the boundary layer given by $\frac{u}{\tau \tau}=2\left(\frac{y}{c}\right)-\left(\frac{x^{2}}{c^{2}}\right)$	[7M]	5	4

